风湿性关节炎吃什么药| 直肠息肉有什么症状| 长鱼是什么鱼| 为什么汤泡饭对胃不好| 缺钙吃什么补钙最快| 幽门螺旋杆菌弱阳性是什么意思| 打车费计入什么科目| 日柱将星是什么意思| 半什么半什么的成语| 嘴唇薄的男人面相代表什么意味| 七月二十四是什么星座| 喉咙红肿吃什么药| 小确幸是什么意思| 童字五行属什么| 胎儿停止发育是什么原因造成的| 血脂稠吃什么药最好| 右侧卵巢内囊性回声是什么意思| 死马当活马医是什么意思| 菊花的功效是什么| 小孩坐火车需要什么证件| 胃火喝什么茶降火| 浮躁是什么意思| 白条是什么| 劳改是什么意思| 榔头是什么意思| 黄色是什么意思| 中将相当于什么级别| 吃什么药可以延长射精| 头疼流鼻血是什么原因| 10月1日是什么日子| 手足口病是什么症状| 口腔扁平苔藓是什么原因造成的| 舌头上有黑点是什么原因| 什么花在春天开| 中国国花是什么花| 曝光是什么意思| 内分泌代谢科是看什么病的| 为什么会缺铁性贫血| 尿酸高中医叫什么病| fzl什么意思| 抽烟打嗝是什么情况| 胎盘厚有什么影响| 板鞋配什么裤子好看| 1月1日是什么日子| loewe是什么牌子| 戴朱砂有什么好处| 什么是职务| ahc属于什么档次| 胆囊炎吃什么好| 意会是什么意思| 竹鼠吃什么| 吃饭掉筷子有什么预兆| 雨淋棺材有什么说法| 梦到自己怀孕是什么意思| 鸡蛋黄发红是什么原因| 颈动脉彩超查什么| 经常心慌是什么原因| 右眼皮跳是什么意思| 贪吃的动物是什么生肖| 去澳门需要什么证件| 养膘是什么意思| 梦见玉碎了是什么意思| 豆包是什么| 梦见自己洗衣服是什么意思| 聊表心意什么意思| 喝酒手发抖是什么原因| 橘红是什么| mlb是什么品牌| 腿上紫色血丝什么原因| 744是什么意思| 通房是什么意思| 咳血是什么原因引起的| 血小板低吃什么药| 女无是什么字| 你的书包里有什么英文| 数不胜数是什么意思| kj是什么意思| 见到黑猫代表什么预兆| 麻醉科属于什么科室| 11月24是什么星座| nuxe是什么牌子护肤品| dos是什么| 开金花是什么生肖| 儿童尿路感染吃什么药| 9d是什么意思| 左侧小腹疼是什么原因| 气血不足吃什么中成药| 子宫内膜异位症是什么意思| 尔时是什么意思| 吃丹参有什么好处| 头晕目眩是什么病的征兆| 唐氏综合征是什么意思| 包拯属什么生肖| 血管炎症状表现是什么| 雅字取名的寓意是什么| 竖中指是什么意思| 口臭口苦口干吃什么药| 勒索是什么意思| 麻小是什么意思| 婴儿为什么喜欢趴着睡| 硬盘是什么意思| 君子兰什么时候开花| 后嗣是什么意思| 凤凰单枞是什么茶| 尿蛋白是什么原因造成的| 2017是什么年| 乙肝表面抗原携带者什么意思| 鼻子无故出血什么原因| 蝉又叫什么名字| 权志龙为什么叫gd| 嗓子痛吃什么药| 什么手机拍照效果最好| 幽门螺旋杆菌是什么症状| 正常龟头什么样子| 肠息肉是什么原因造成的| 甘薯是什么| 舌头不舒服挂什么科| degaia是什么牌子| 弯弯的彩虹像什么| 葡萄球菌用什么抗生素| 甲亢是什么症状| 什么瓜不能吃脑筋急转弯| 高密度灶是什么意思| 首重是什么意思| 心脏房颤是什么原因| 李白是什么星座| 尿酸高适合吃什么食物| 女生体毛多是什么原因| 黑裙配什么颜色的上衣| essential是什么意思| 为什么最迷人的最危险是什么歌| 骨质疏松吃什么药| 玫瑰糠疹用什么药| 孕妇梦见黑蛇是什么意思| 3月16是什么星座| pp材质是什么| 血清和血浆有什么区别| 梦见输液是什么意思| 研讨会是什么意思| 瞳距是什么意思| 什么叫五行| 睡不着是什么原因| 白白的云朵像什么| 7.23是什么星座| 葡挞跟蛋挞有什么区别| 小孩的指甲脱落是什么原因| 全套什么意思| 女生是t是什么意思| 细菌感染引起的发烧吃什么药| 唐伯虎是什么生肖| 锁骨下面的骨头叫什么| 拉肚子吃什么水果| 5月份什么星座| 碱水对人有什么危害| 什么级别| 男性生殖器叫什么| 吃什么可以偷偷流产| 油腻是什么意思| 车前草治什么病| 吃猪肝补什么| 珠是什么生肖| 红烧肉可以放什么配菜| pep是什么意思| 灵芝孢子粉有什么用| 热感冒吃什么药好| 拔罐为什么会起水泡| 造纸术什么时候发明的| 逝者如斯夫是什么意思| 胎盘能治什么病| 乌龟肺炎用什么药| 大便次数少是什么原因| 骨科是什么梗| 什么是速写| 不饱和脂肪酸是什么意思| 达泊西汀有什么副作用| 龟头炎是什么症状| 小便尿不出来什么原因| 手掌麻是什么原因引起的| 一库是什么意思| 什么是事业编| 肝钙化是什么意思| 站军姿有什么好处| 水为什么是透明的| 什么而不| 梦见杀人了是什么意思| 男人喝什么茶壮阳| 抽血前喝水有什么影响| 胃病忌什么| 安全总监是什么级别| surprise是什么意思| 评头论足什么意思| 梅雨季节什么时候结束| 容易长口腔溃疡是什么原因| 富贵命是什么生肖| 晚上八点到九点是什么时辰| 口疮吃什么药| 什么手机拍照效果最好| 波霸是什么| 你掀起波澜抛弃了我是什么歌| 子宫内膜炎什么症状| 胃泌素是什么| 柱镜是什么| 吃猪肺有什么好处和坏处| 腰疼是什么病的前兆| 六月底是什么星座| 农历十月份是什么星座| 1965属什么生肖| lafuma是什么牌子| 成都有什么特产| 白天梦见蛇是什么预兆| 紫癜病是什么病| 三七粉做面膜有什么功效| 灰指甲用什么药好| 人乳头瘤病毒16型阳性是什么意思| 牛标志的车是什么牌子| 孩子干咳吃什么药效果好| 为什么会得肠胃炎| 缘分什么意思| 丛林法则是什么意思| 染色体xy代表什么| 进贡是什么意思| 2002年是什么生肖| nac是什么意思| 运动前吃什么| 刚出生的宝宝要注意什么| 附件是什么部位| 起伏跌宕什么意思| 小孩睡觉张开嘴巴是什么原因| 甙是什么意思| 牙齿松动什么原因| 黑鱼是什么鱼| 屁股眼痒是什么原因| 氨基比林是什么药| 白菜什么时候种| 感冒为什么会打喷嚏| 熊是什么生肖| panerai是什么牌子| 蛐蛐进屋有什么预兆| 小基数是什么意思| 肛瘘是什么情况| 眼花缭乱什么意思| 保养是什么意思| 意味深长的意思是什么| 散光是什么症状| 品种是什么意思| 三个句号代表什么意思| 骏五行属什么| 腿上有青筋是什么原因| dep是什么意思| 裘皮是什么皮| supreme是什么牌子| 肝实质密度减低是什么意思| 什么球身上长毛| 抽血前喝水有什么影响| 什么是债权| 3月份是什么季节| 唐僧叫什么| 草木皆兵是什么意思| 怀孕吐得厉害吃什么可以缓解| 全自动洗衣机不排水是什么原因| 中国科协是什么级别| 脸书是什么意思| 左侧头疼是什么原因| 无疾而终是什么意思| 百度
Skip to main content
Advertisement
Main content starts here

Abstract

Bastin et al. (Reports, 5 July 2019, p. 76) state that the restoration potential of new forests globally is 205 gigatonnes of carbon, conclude that “global tree restoration is our most effective climate change solution to date,” and state that climate change will drive the loss of 450 million hectares of existing tropical forest by 2050. Here we show that these three statements are incorrect.
Bastin et al. (1) provide an assessment of the potential to expand the area of Earth allocated to forests to sequester carbon to mitigate climate change. They (i) produce a data-driven model to estimate the potential area of Earth where trees will grow, then exclude existing forest, croplands, and urban areas, estimating that the remaining 900 Mha of new tree cover is the global “restoration potential”; (ii) estimate that the resulting carbon sequestration from foresting this area is 205 GtC; (iii) suggest that this will offset two-thirds of the “global anthropogenic carbon burden,” making it the “most effective climate change solution to date”; and finally (iv) extend their spatial model of restoration potential in time, showing a net 223 Mha decrease in global tree cover by 2050. We consider the last three of these results to be fundamentally flawed.
The stated 205 GtC restoration potential is 0.22 GtC Mha?1 new forest cover, double previously published estimates (25). This anomaly is not noted by the authors (1). Four alternative approaches show that this number is almost certainly too high:
1) Anthropogenic land-use change, since 1750, has emitted 200 GtC, which suggests that it is highly unlikely that restoring only a fraction of previously deforested land will itself sequester 205 GtC (5). The 900 Mha that Bastin et al. suggest restoring is 39% of formerly tree-covered land (1), hence historical evidence suggests that restoring this proportion of it would lead to 78 GtC uptake. Add the fraction of the 200 GtC land sink since 1750 attributable to the 900 Mha (14% of once tree-covered land and today’s existing forests), and from first principles we expect 107 GtC uptake from restoring 900 Mha of new tree cover (0.12 GtC Mha?1).
2) Using a fully coupled climate model to restore 100% of agricultural land (2) predicts 240 GtC uptake on 2020 Mha of land (0.12 GtC Mha?1). This converts to 107 GtC for restoring 900 Mha.
3) Using mapped restoration areas regenerating to climatically supportable carbon stock levels (3) results in 108 GtC sequestered over 900 Mha (0.12 GtC Mha?1).
4) A mapping exercise that identified restoration areas, with no economic constraints and published sequestration rates, gave a median estimate of 89 GtC when scaled to 900 Mha (4) (0.10 GtC Mha?1).
Although Bastin et al. use tree cover area as their metric, this is directly comparable to the above land area estimates, because their methods account for this; for example, 10% tree cover is only 10% of the per-hectare carbon sequestration. The four published estimates above are similar, with a mean of 103 GtC (range, 89 to 108), just 50% the Bastin et al. estimate.
Bastin et al.’s anomalous result arises because their multiplication of tree cover area by mature ecosystem carbon stock levels is incorrect. First, they assume, incorrectly, that soil carbon stocks are zero prior to restoration. The original carbon density values used in (1) show that 37 to 86% of the carbon sequestration in each vegetation class is new soil carbon, a total of 113 GtC. This is not credible: It is equivalent to all the soil organic carbon lost globally since the advent of farming, ~116 GtC (6). Critically, when converting grassland or pasture to tree-covered land [the majority of the new tree cover (1)], meta-analyses show no overall trend in soil carbon stocks (7, 8). Alternatively, if the global average 3.6% loss of soil organic carbon was assumed to return to these soils, that would add 4 GtC, not 113 GtC as Bastin et al. claim. Thus, the total sequestration, when accounting for the prior existence of carbon in soil, is ~96 GtC, in line with published estimates.
Bastin et al. secondly assume that live stem, leaf, root, and necromass are all also zero prior to restoration. This is not correct: All of the 900 Mha they highlight as available has plants growing on it, and a substantial proportion will have some trees already. Carbon removed from the atmosphere by restoration is only that added to the system from new additional vegetation growth. To illustrate the likely magnitude of this error, a recent restoration potential analysis showed 42.1 GtC uptake from restoring 350 Mha of forest, in addition to the 10.6 GtC already in biomass on the land prior to restoration (3). Using the Bastin et al. method, sequestration would thus have been overreported by ~25%.
The third Bastin et al. assumption is that future environmental change will have no impact on forest carbon stocks. Typically, higher atmospheric CO2 concentrations increase carbon stocks more than higher temperatures and altered rainfall reduce it (9, 10). Given the intrinsic uncertainty of future emissions, this impact could be as low as ~7% under a low-emission scenario (3), or as high as a ~20% increase under a mid-range scenario for the tropical forest biome (11). Assuming the latter and taking all three biases into account (initial soil, initial biomass, changing environment), ~92 GtC is expected to be sequestered in 900 Mha of new forest cover (92 GtC on the land after restoration, minus 23 GtC already on the land, plus 4 GtC added to the soil, plus 19 GtC added from the changing environment). This corrected 92 GtC value is similar to the four independent sequestration estimates detailed above, but is less than half the Bastin et al. estimate.
The authors then compound their overestimate of the importance of forest restoration by asserting that “reaching this maximum restoration potential [205 GtC] would reduce a considerable proportion of the global anthropogenic carbon burden (~300 GtC) to date.” This 67% reduction is not correct. Human actions have added 640 GtC since 1750; thus, 205/640 is 32%. The authors appear to have confused the increase in atmospheric carbon dioxide concentration since 1750 with total anthropogenic emissions. The difference is because ~55% of anthropogenic CO2 emissions were removed from the atmosphere into land and ocean sinks. Reversing the atmospheric increase via restoration concomitantly weakens the sink strength (2, 5, 12). Thus, overall, restoration over 900 Mha is ~100 GtC, which would reduce the anthropogenic burden by ~15% [i.e., (100 × 0.45)/300 from an atmospheric perspective, or 100/640 from an emissions perspective), not ~67% as Bastin et al. claim. Furthermore, 15% overestimates the climate impact of Bastin et al.’s restoration potential, because 25% of the new tree cover is in tundra and boreal regions, where warming from forests’ lower surface albedo can offset the cooling from new carbon uptake (13).
Bastin et al. state in their abstract that “[our study] highlights global tree restoration as our most effective climate change solution to date.” This statement is not supported by the evidence provided. Furthermore, such a statement can never be supported because (i) in physical terms, keeping fossil carbon in its original geological storage is self-evidently a more effective solution to climate change than releasing it and capturing it later in trees; (ii) allowing trees to grow where they once grew is largely merely replacing carbon that was previously lost through land-use change, and so does not address fossil fuel emissions; and (iii) sequestering ~100 GtC into new forests is equivalent to just 10 years of current emissions, which clearly shows that forest restoration is of lower importance than rapidly reducing fossil fuel emissions.
Finally, Bastin et al. model the future, concluding that “global potential canopy cover may shrink by ~223 million hectares by 2050, with the vast majority of losses occurring in the tropics.” The authors state that their results are “in stark contrast to most current model predictions” but give no explanation for this. The reason is that they first parameterize an environment–tree cover association in space for the recent past, and then apply it over time into the future, giving an erroneous result. This arises because there are no current areas of Earth today that are as hot as will exist in the core wet tropics in 2050. Thus, when 2050 climate output shows higher temperatures in areas of current tropical forest, the Bastin et al. machine-learning model fills in the tree cover from areas with the closest match from today—but these are open forest and savanna areas that are also considerably drier than climate models predict for future tropical forest areas. This upper temperature limit problem is a well-recognized error within bioclimatic envelope-type modeling (14). Thus, although the intact Amazon carbon sink is declining, there is no hint of a decline in canopy cover (15) and a switch due to climate change alone, in the absence of deforestation and logging (which were not modeled), to swathes of open forest within the next 30 years is highly unlikely, even under the most pessimistic of climate-driven vegetation models (11).
One further contributory reason why the 2050 results that Bastin et al. report are in “stark contrast” to other models is because their spatial correlations exclude any impact of rising atmospheric CO2. Given that no place on Earth today has 2050-level CO2 concentrations, their machine-learning approach is not an appropriate approach. Tropical forests’ response to global change is the net of a negative impact of high temperatures, a positive impact of rising CO2, and the impacts of any changes in rainfall or its distribution (9). The pivotal role of CO2 for photosynthesis is well known, evidenced from theory, observations, and experiments (9). The decision to ignore this evidence means that the reported net 46 GtC loss from forest cover by 2050 is also incorrect.

References

1
J.-F. Bastin, Y. Finegold, C. Garcia, D. Mollicone, M. Rezende, D. Routh, C. M. Zohner, T. W. Crowther, The global tree restoration potential. Science 365, 76–79 (2019).
2
V. K. Arora, A. Montenegro, Small temperature benefits provided by realistic afforestation efforts. Nat. Geosci. 4, 514–518 (2011).
3
S. L. Lewis, C. E. Wheeler, E. T. A. Mitchard, A. Koch, Restoring natural forests is the best way to remove atmospheric carbon. Nature 568, 25–28 (2019).
4
B. W. Griscom, J. Adams, P. W. Ellis, R. A. Houghton, G. Lomax, D. A. Miteva, W. H. Schlesinger, D. Shoch, J. V. Siikam?ki, P. Smith, P. Woodbury, C. Zganjar, A. Blackman, J. Campari, R. T. Conant, C. Delgado, P. Elias, T. Gopalakrishna, M. R. Hamsik, M. Herrero, J. Kiesecker, E. Landis, L. Laestadius, S. M. Leavitt, S. Minnemeyer, S. Polasky, P. Potapov, F. E. Putz, J. Sanderman, M. Silvius, E. Wollenberg, J. Fargione, Natural climate solutions. Proc. Natl. Acad. Sci. U.S.A. 114, 11645–11650 (2017).
5
J. I. House, I. C. Prentice, C. Le Quéré, Maximum impacts of future reforestation or deforestation on atmospheric CO2. Glob. Change Biol. 8, 1047–1052 (2002).
6
J. Sanderman, T. Hengl, G. J. Fiske, Soil carbon debt of 12,000 years of human land use. Proc. Natl. Acad. Sci. U.S.A. 114, 9575–9580 (2017).
7
L. B. Guo, R. M. Gifford, Soil carbon stocks and land use change: A meta analysis. Glob. Change Biol. 8, 345–360 (2002).
8
L. Deng, G.-y. Zhu, Z. Tang, Z. Shangguan, Global patterns of the effects of land-use changes on soil carbon stocks. Glob. Ecol. Conserv. 5, 127–138 (2016).
9
P. Ciais et al., in Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, T. F. Stocker et al., Eds. (Cambridge Univ. Press, 2014).
10
S. L. Lewis, D. P. Edwards, D. Galbraith, Increasing human dominance of tropical forests. Science 349, 827–832 (2015).
11
C. Huntingford, P. Zelazowski, D. Galbraith, L. M. Mercado, S. Sitch, R. Fisher, M. Lomas, A. P. Walker, C. D. Jones, B. B. B. Booth, Y. Malhi, D. Hemming, G. Kay, P. Good, S. L. Lewis, O. L. Phillips, O. K. Atkin, J. Lloyd, E. Gloor, J. Zaragoza-Castells, P. Meir, R. Betts, P. P. Harris, C. Nobre, J. Marengo, P. M. Cox, Simulated resilience of tropical rainforests to CO2-induced climate change. Nat. Geosci. 6, 268–273 (2013).
12
C. D. Jones, P. Ciais, S. J. Davis, P. Friedlingstein, T. Gasser, G. P. Peters, J. Rogelj, D. P. van Vuuren, J. G. Canadell, A. Cowie, R. B. Jackson, M. Jonas, E. Kriegler, E. Littleton, J. A. Lowe, J. Milne, G. Shrestha, P. Smith, A. Torvanger, A. Wiltshire, Simulating the Earth system response to negative emissions. Environ. Res. Lett. 11, 095012 (2016).
13
R. A. Betts, Offset of the potential carbon sink from boreal forestation by decreases in surface albedo. Nature 408, 187–190 (2000).
14
K. J. Feeley, M. R. Silman, Biotic attrition from tropical forests correcting for truncated temperature niches. Glob. Change Biol. 16, 1830–1836 (2010).
15
R. J. W. Brienen, O. L. Phillips, T. R. Feldpausch, E. Gloor, T. R. Baker, J. Lloyd, G. Lopez-Gonzalez, A. Monteagudo-Mendoza, Y. Malhi, S. L. Lewis, R. Vásquez Martinez, M. Alexiades, E. álvarez Dávila, P. Alvarez-Loayza, A. Andrade, L. E. O. C. Arag?o, A. Araujo-Murakami, E. J. M. M. Arets, L. Arroyo, G. A. Aymard C, O. S. Bánki, C. Baraloto, J. Barroso, D. Bonal, R. G. A. Boot, J. L. C. Camargo, C. V. Castilho, V. Chama, K. J. Chao, J. Chave, J. A. Comiskey, F. Cornejo Valverde, L. da Costa, E. A. de Oliveira, A. Di Fiore, T. L. Erwin, S. Fauset, M. Forsthofer, D. R. Galbraith, E. S. Grahame, N. Groot, B. Hérault, N. Higuchi, E. N. Honorio Coronado, H. Keeling, T. J. Killeen, W. F. Laurance, S. Laurance, J. Licona, W. E. Magnussen, B. S. Marimon, B. H. Marimon-Junior, C. Mendoza, D. A. Neill, E. M. Nogueira, P. Nú?ez, N. C. Pallqui Camacho, A. Parada, G. Pardo-Molina, J. Peacock, M. Pe?a-Claros, G. C. Pickavance, N. C. A. Pitman, L. Poorter, A. Prieto, C. A. Quesada, F. Ramírez, H. Ramírez-Angulo, Z. Restrepo, A. Roopsind, A. Rudas, R. P. Salom?o, M. Schwarz, N. Silva, J. E. Silva-Espejo, M. Silveira, J. Stropp, J. Talbot, H. ter Steege, J. Teran-Aguilar, J. Terborgh, R. Thomas-Caesar, M. Toledo, M. Torello-Raventos, R. K. Umetsu, G. M. F. van der Heijden, P. van der Hout, I. C. Guimar?es Vieira, S. A. Vieira, E. Vilanova, V. A. Vos, R. J. Zagt, Long-term decline of the Amazon carbon sink. Nature 519, 344–348 (2015).

(0)eLetters

eLetters is a forum for ongoing peer review. eLetters are not edited, proofread, or indexed, but they are screened. eLetters should provide substantive and scholarly commentary on the article. Neither embedded figures nor equations with special characters can be submitted, and we discourage the use of figures and equations within eLetters in general. If a figure or equation is essential, please include within the text of the eLetter a link to the figure, equation, or full text with special characters at a public repository with versioning, such as Zenodo. Please read our Terms of Service before submitting an eLetter.

Log In to Submit a Response

No eLetters have been published for this article yet.

ScienceAdviser

Get Science’s award-winning newsletter with the latest news, commentary, and research, free to your inbox daily.

怀孕吃火龙果对胎儿有什么好 伤官见官什么意思 睡觉一直做梦是什么原因 舌头疼挂什么科 梦魇是什么
脸基尼是什么意思 瓦特发明了什么 起湿疹是什么原因造成的 中暑吃什么好 12月15号是什么星座
产后为什么脸部松弛 好奇害死猫是什么意思 甘少一横是什么字 有腿毛的男人说明什么 冷冻液是什么
牙出血什么原因 大黄是什么 脸油是什么原因导致的 宝宝吃什么辅食最好 脾虚湿热吃什么药
莫西莫西是什么意思hcv8jop1ns1r.cn 容易感冒是什么原因hcv9jop6ns4r.cn 塑形是什么hlguo.com 偶尔失眠是什么原因sanhestory.com 兰花用什么肥料最好hcv8jop8ns1r.cn
全身抽筋吃什么药hcv8jop8ns0r.cn 正财透干是什么意思hcv8jop0ns0r.cn 花骨朵是什么意思hcv7jop6ns1r.cn 双响炮是什么hcv8jop5ns3r.cn 36 80是什么罩杯hcv9jop8ns1r.cn
女人梦见狼是什么预兆naasee.com 梦见织毛衣是什么意思96micro.com 白虎是什么意思liaochangning.com 牛黄安宫丸治什么病hcv8jop8ns5r.cn 狮子座女和什么星座最配hcv8jop8ns0r.cn
喉咙不舒服挂什么科hcv8jop1ns5r.cn 爱情是个什么东西ff14chat.com 螃蟹为什么吐泡泡hcv9jop2ns3r.cn 沙拉酱可以做什么美食hcv8jop4ns2r.cn 散片是什么意思hcv8jop7ns0r.cn
百度